Stability of XIST repression in relation to genomic imprinting following global genome demethylation in a human cell line
نویسندگان
چکیده
DNA methylation is essential in X chromosome inactivation and genomic imprinting, maintaining repression of XIST in the active X chromosome and monoallelic repression of imprinted genes. Disruption of the DNA methyltransferase genes DNMT1 and DNMT3B in the HCT116 cell line (DKO cells) leads to global DNA hypomethylation and biallelic expression of the imprinted gene IGF2 but does not lead to reactivation of XIST expression, suggesting that XIST repression is due to a more stable epigenetic mark than imprinting. To test this hypothesis, we induced acute hypomethylation in HCT116 cells by 5-aza-2'-deoxycytidine (5-aza-CdR) treatment (HCT116-5-aza-CdR) and compared that to DKO cells, evaluating DNA methylation by microarray and monitoring the expression of XIST and imprinted genes IGF2, H19, and PEG10. Whereas imprinted genes showed biallelic expression in HCT116-5-aza-CdR and DKO cells, the XIST locus was hypomethylated and weakly expressed only under acute hypomethylation conditions, indicating the importance of XIST repression in the active X to cell survival. Given that DNMT3A is the only active DNMT in DKO cells, it may be responsible for ensuring the repression of XIST in those cells. Taken together, our data suggest that XIST repression is more tightly controlled than genomic imprinting and, at least in part, is due to DNMT3A.
منابع مشابه
XIST repression in the absence of DNMT1 and DNMT3B.
X chromosome inactivation (XCI) in human and mice involves XIST/Xist gene expression from the inactive X (Xi) and repression from the active X (Xa). Repression of the XIST/Xist gene on the Xa has been associated with methylation of its 5' region. In mice, Dnmt1 has been shown to be involved in the methylation and transcriptional repression of Xist on Xa. We examined maintenance of XIST gene rep...
متن کاملImprinting mechanisms.
A number of recent studies have provided new insights into mechanisms that regulate genomic imprinting in the mammalian genome. Regions of allele-specific differential methylation (DMRs) are present in all imprinted genes examined. Differential methylation is erased in germ cells at an early stage of their development, and germ-line-specific methylation imprints in DMRs are reestablished around...
متن کاملMaintenance of Xist Imprinting Depends on Chromatin Condensation State and Rnf12 Dosage in Mice
In female mammals, activation of Xist (X-inactive specific transcript) is essential for establishment of X chromosome inactivation. During early embryonic development in mice, paternal Xist is preferentially expressed whereas maternal Xist (Xm-Xist) is silenced. Unlike autosomal imprinted genes, Xist imprinting for Xm-Xist silencing was erased in cloned or parthenogenetic but not fertilized emb...
متن کاملIn vivo YY1 knockdown effects on genomic imprinting.
The YY1 transcription factor is predicted to control several imprinted domains, including the Peg3, Gnas and Xist/Tsix regions. To test this possibility, we have used RNA interference strategies to generate transgenic mouse lines that express reduced levels of the cellular YY1 protein. As predicted, lowering YY1 levels resulted in global expression changes in these three imprinted domains. In n...
متن کاملHMG domain containing SSRP1 is required for DNA demethylation and genomic imprinting in Arabidopsis.
In Arabidopsis, DEMETER (DME) DNA demethylase contributes to reprogramming of the epigenetic state of the genome in the central cell. However, other aspects of the active DNA demethylation processes remain elusive. Here we show that Arabidopsis SSRP1, known as an HMG domain-containing component of FACT histone chaperone, is required for DNA demethylation and for activation and repression of man...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 47 شماره
صفحات -
تاریخ انتشار 2014